论文标题

多个异构网络的非参数回归

Nonparametric regression for multiple heterogeneous networks

论文作者

Chandna, Swati, Maugis, Pierre-Andre

论文摘要

我们研究了在同一节点上观察到多个不同网络的设置的非参数方法。这些样本可能是以从共同分布或异质网络形式绘制的复制网络的形式出现的,而网络生成的过程从一个网络到另一个网络都不同,例如〜动态和横截面网络。非方向网络的非参数方法集中在Graphon模型的估计上。虽然Graphon模型解释了节点异质性,但它并未解释网络异质性,这是针对观察到多个网络的应用程序的特定功能。为了解决多个网络的设置,我们提出了一个多用途模型,该模型允许节点级别和网络级异质性。我们展示了如何利用来自多个网络的信息来通过标准的非参数回归技术来估算多仪器,例如内核回归,正交系列估计。我们研究了提出的估计器的理论特性,以建立潜在的淋巴结位置回收到可忽略不计的误差,并将多弹药估计量与正态分布的收敛性。在模拟研究中研究了有限样本性能,并将其应用于两个现实世界网络---蚂蚁的动态接触网络和来自不同受试者的结构性大脑网络的集合 - 说明了我们方法的实用性。

We study nonparametric methods for the setting where multiple distinct networks are observed on the same set of nodes. Such samples may arise in the form of replicated networks drawn from a common distribution, or in the form of heterogeneous networks, with the network generating process varying from one network to another, e.g.~dynamic and cross-sectional networks. Nonparametric methods for undirected networks have focused on estimation of the graphon model. While the graphon model accounts for nodal heterogeneity, it does not account for network heterogeneity, a feature specific to applications where multiple networks are observed. To address this setting of multiple networks, we propose a multi-graphon model which allows node-level as well as network-level heterogeneity. We show how information from multiple networks can be leveraged to enable estimation of the multi-graphon via standard nonparametric regression techniques, e.g. kernel regression, orthogonal series estimation. We study theoretical properties of the proposed estimator establishing recovery of the latent nodal positions up to negligible error, and convergence of the multi-graphon estimator to the normal distribution. Finite sample performance are investigated in a simulation study and application to two real-world networks---a dynamic contact network of ants and a collection of structural brain networks from different subjects---illustrate the utility of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源