论文标题
可观察的彩色随机顶点模型及其聚合物极限
Observables of coloured stochastic vertex models and their polymer limits
论文作者
论文摘要
在象限中有色随机顶点模型的上下文中,我们确定了一个可观察到的家族,其平均值由显式轮廓积分给出。可观察的是模型彩色高度功能的$ Q $ - 大型的某些线性组合。在聚合物极限中,这可以使严格弱化的分区功能,半分化的布朗尼和连续的布朗聚合物的分区函数产生不可或缺的表示,并且聚合物的起点和终点各不相同。
In the context of the coloured stochastic vertex model in a quadrant, we identify a family of observables whose averages are given by explicit contour integrals. The observables are certain linear combinations of $q$-moments of the coloured height functions of the model. In a polymer limit, this yields integral representations for moments of partition functions of strict-weak, semi-discrete Brownian, and continuum Brownian polymers with varying beginning and ending points of the polymers.