论文标题
Yang-Mills经典和量子力学以及最大混乱的动力学系统
Yang-Mills Classical and Quantum Mechanics and Maximally Chaotic Dynamical Systems
论文作者
论文摘要
最大混乱的动力系统(DS)是具有非零kolmogorov熵的系统。 Anosov C条件定义了具有相轨迹和正质kolmogorov熵指数不稳定性的双曲动力学系统的覆盖范围类别,因此具有最大的混乱。对Anosov-Kolmogorov系统的兴趣与尝试了解放松现象,统计力学的基础,流体动力学中的湍流,Yang-Mills领域的非线性动力学,Newtonian Grartity中的N-Body System的非线性动力学的尝试有关最大混乱的动力学系统的经典和量子力学特性,将介绍C-K理论在研究Yang-Mills动力学和重力系统及其在Monte Carlo方法中的应用。
The maximally chaotic dynamical systems (DS) are the systems which have nonzero Kolmogorov entropy. The Anosov C-condition defines a reach class of hyperbolic dynamical systems that have exponential instability of the phase trajectories and positive Kolmogorov entropy and are therefore maximally chaotic. The interest in Anosov-Kolmogorov systems is associated with the attempts to understand the relaxation phenomena, the foundation of the statistical mechanics, the appearance of turbulence in fluid dynamics, the non-linear dynamics of the Yang-Mills field, the N-body system in Newtonian gravity and the relaxation phenomena in stellar systems and the Black hole thermodynamics. The classical- and quantum-mechanical properties of maximally chaotic dynamical systems, the application of the C-K theory to the investigation of the Yang-Mills dynamics and gravitational systems as well as their application in the Monte Carlo method will be presented.