论文标题
内外地铁乘车率预测的物理虚拟协作建模
Physical-Virtual Collaboration Modeling for Intra-and Inter-Station Metro Ridership Prediction
论文作者
论文摘要
由于在现实世界情景中的广泛应用,地铁乘车预测是智能运输系统中至关重要但具有挑战性的任务。但是,传统方法要么忽略地铁系统的拓扑信息,要么直接学习物理拓扑,并且无法完全探索乘客进化的模式。为了解决这个问题,我们将地铁系统建模为具有各种拓扑结构的图形,并提出了一个统一的物理 - 虚拟协作图网络(PVCGN),可以有效地从裁缝设计的图形中学习复杂的乘客模式。具体而言,物理图是基于研究的地铁系统的现实拓扑直接构建的,而在建设乘客流量相似性和相关性的指导下,使用虚拟拓扑构建了相似图和相关图。这些互补图被合并到用于时空表示学习的图形卷积复发单元(GC-GRU)中。此外,还应用了完全连接的封闭式复发单元(FC-GRU)来捕获全球进化趋势。最后,我们使用GC-GRU和FC-GRU开发了SEQ2SEQ模型,以顺序预测未来的Metro乘车率。在两个大规模基准(例如上海地铁和杭州地铁)上进行了广泛的实验,很好地证明了我们的PVCGN对车站级地铁乘客量预测的优越性。此外,我们将拟议的PVCGN应用于在线原产地点(OD)乘客预测,实验结果显示了我们方法的普遍性。我们的代码和基准可在https://github.com/hcplab-sysu/pvcgn上找到。
Due to the widespread applications in real-world scenarios, metro ridership prediction is a crucial but challenging task in intelligent transportation systems. However, conventional methods either ignore the topological information of metro systems or directly learn on physical topology, and cannot fully explore the patterns of ridership evolution. To address this problem, we model a metro system as graphs with various topologies and propose a unified Physical-Virtual Collaboration Graph Network (PVCGN), which can effectively learn the complex ridership patterns from the tailor-designed graphs. Specifically, a physical graph is directly built based on the realistic topology of the studied metro system, while a similarity graph and a correlation graph are built with virtual topologies under the guidance of the inter-station passenger flow similarity and correlation. These complementary graphs are incorporated into a Graph Convolution Gated Recurrent Unit (GC-GRU) for spatial-temporal representation learning. Further, a Fully-Connected Gated Recurrent Unit (FC-GRU) is also applied to capture the global evolution tendency. Finally, we develop a Seq2Seq model with GC-GRU and FC-GRU to forecast the future metro ridership sequentially. Extensive experiments on two large-scale benchmarks (e.g., Shanghai Metro and Hangzhou Metro) well demonstrate the superiority of our PVCGN for station-level metro ridership prediction. Moreover, we apply the proposed PVCGN to address the online origin-destination (OD) ridership prediction and the experiment results show the universality of our method. Our code and benchmarks are available at https://github.com/HCPLab-SYSU/PVCGN.