论文标题

在几何不连续性的情况下,应力扩散相互作用的连续建模

Continuum modelling of stress diffusion interactions in an elastoplastic medium in the presence of geometric discontinuity

论文作者

Mahendran, Rupesh Kumar, Hirshikesh, Annabattula, Ratna Kumar, Natarajan, Sundararajan

论文摘要

几十年来,化学机械耦合系统一直是人们关注的主题。以前解决此类模型的尝试主要集中在弹性材料上,而无需考虑塑性变形超出产量,从而导致故障计算中的不准确性。本文旨在研究使用耦合的化学机械系统在弹性塑料材料中应力扩散相互作用的影响。诱导的应力取决于以一种方式耦合系统的局部浓度,反之亦然。使用开源有限元求解器Fenics中的有限元公式来解决时间依赖性的瞬态耦合系统。本文试图在计算上研究变形和扩散的相互作用及其对塑性应变定位的影响。我们研究了几何不连续性在涉及扩散物种的场景中的作用,即具有凹槽/孔/空隙的板和带有空隙/孔/核心的粒子。我们还研究了应力浓度和塑料产量对扩散信息的影响。开发的代码可以来自https://github.com/mrupeshkumar/elastoplastic-stress-diffusion-coupling-coupling

Chemo-mechanical coupled systems have been a subject of interest for many decades now. Previous attempts to solve such models have mainly focused on elastic materials without taking into account the plastic deformation beyond yield, thus causing inaccuracies in failure calculations. This paper aims to study the effect of stress-diffusion interactions in an elastoplastic material using a coupled chemo-mechanical system. The induced stress is dependent on the local concentration in a one way coupled system, and vice versa in a two way coupled system. The time-dependent transient coupled system is solved using a finite element formulation in an open-source finite element solver FEniCS. This paper attempts to computationally study the interaction of deformation and diffusion and its effect on the localization of plastic strain. We investigate the role of geometric discontinuities in scenarios involving diffusing species, namely, a plate with a notch/hole/void and particle with a void/hole/core. We also study the effect of stress concentrations and plastic yielding on the diffusion-deformation. The developed code can be from https://github.com/mrupeshkumar/Elastoplastic-stress-diffusion-coupling

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源