论文标题

低级平价检查代码在整数戒指上模仿Prime Power

Low-Rank Parity-Check Codes over the Ring of Integers Modulo a Prime Power

论文作者

Renner, Julian, Puchinger, Sven, Wachter-Zeh, Antonia, Hollanti, Camilla, Freij-Hollanti, Ragnar

论文摘要

我们在有限链环$ \ mathbb {z} _ {p^r} $的扩展环上定义和分析低级平价检查(LRPC)代码,其中$ p $是prime,$ r $是一个积极的integer。 LRPC代码最初是由Gaborit等人(2013年)就加密应用程序提出的。有限环的改编灵感来自Kamche等人最近的一篇论文。 (2019年),它通过有限的原理构建了Gabidulin代码,其中包括时空代码和网络编码的应用。我们基于简单的线性代数操作提供了一种解码算法。此外,我们在解码器的故障概率上得出了上限。上限对于等于自由等级的错误是有效的。

We define and analyze low-rank parity-check (LRPC) codes over extension rings of the finite chain ring $\mathbb{Z}_{p^r}$, where $p$ is a prime and $r$ is a positive integer. LRPC codes have originally been proposed by Gaborit et al.(2013) over finite fields for cryptographic applications. The adaption to finite rings is inspired by a recent paper by Kamche et al. (2019), which constructed Gabidulin codes over finite principle ideal rings with applications to space-time codes and network coding. We give a decoding algorithm based on simple linear-algebraic operations. Further, we derive an upper bound on the failure probability of the decoder. The upper bound is valid for errors whose rank is equal to the free rank.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源