论文标题

在Lebesgue-ljunggren-Nagell类型方程式上

On a class of Lebesgue-Ljunggren-Nagell type equations

论文作者

Dąbrowski, Andrzej, Günhan, Nursena, Soydan, Gökhan

论文摘要

给定奇怪的,coprime integers $ a $,$ b $($ a> 0 $),我们考虑了diophantine方程$ ax^2+b^{2l} = 4y^n $,$ x,y \ in \ bbb z $,$ l \ in \ bb in \ bb n $,$ n $ odd prime,$ odd prime,$ odd prime,$ \ gcd(x,x,x,y)= 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $)在$ 2^{n-1} b^l \ equiv \ equiv \ equiv \ equiv \ equiv \ equiv \ equiv \ equiv \ pm 1(\ mod a)$和$ \ gcd(n,b)= 1 $ gcd(n,b) For other square-free integers $a>3$ and $b$ a power of an odd prime, we prove that the above Diophantine equation has no solutions for all integers $x$, $y$ with ($\gcd(x,y)=1$), $l\in\mathbb{N}$ and all odd primes $n>3$, satisfying $ 2^{n-1} b^l \ equiv \ equ \ pm 1(\ mod a)$,$ \ gcd(n,b)= 1 $,和$ \ gcd(n,h(-a))= 1 $,其中$ h(-a)$表示想象中的二次二次fiff field $ \ nath $ \ nath $ \ nathbb q(\ sq)。

Given odd, coprime integers $a$, $b$ ($a>0$), we consider the Diophantine equation $ax^2+b^{2l}=4y^n$, $x, y\in\Bbb Z$, $l \in \Bbb N$, $n$ odd prime, $\gcd(x,y)=1$. We completely solve the above Diophantine equation for $a\in\{7,11,19,43,67,163\}$, and $b$ a power of an odd prime, under the conditions $2^{n-1}b^l\not\equiv \pm 1(\mod a)$ and $\gcd(n,b)=1$. For other square-free integers $a>3$ and $b$ a power of an odd prime, we prove that the above Diophantine equation has no solutions for all integers $x$, $y$ with ($\gcd(x,y)=1$), $l\in\mathbb{N}$ and all odd primes $n>3$, satisfying $2^{n-1}b^l\not\equiv \pm 1(\mod a)$, $\gcd(n,b)=1$, and $\gcd(n,h(-a))=1$, where $h(-a)$ denotes the class number of the imaginary quadratic field $\mathbb Q(\sqrt{-a})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源