论文标题
肖克顿的新间隔和两部分平面地图之间的徒连接
Bijective link between Chapoton's new intervals and bipartite planar maps
论文作者
论文摘要
2006年,肖普顿在他列举塔玛里间隔时定义了一类称为“新间隔”的塔玛里间隔,他发现这些新的间隔用两分的平面图将其等效化。我们在这里使用称为“学位树”的新对象之间在这两类对象之间进行直接培养。我们的双眼还提供了一个直观的证据,证明了副鸡和fusy给出的新间隔的一些统计数据未发表的均值分布结果。
In 2006, Chapoton defined a class of Tamari intervals called "new intervals" in his enumeration of Tamari intervals, and he found that these new intervals are equi-enumerated with bipartite planar maps. We present here a direct bijection between these two classes of objects using a new object called "degree tree". Our bijection also gives an intuitive proof of an unpublished equi-distribution result of some statistics on new intervals given by Chapoton and Fusy.