论文标题

基于周期一致性和特征对齐方式的移动语义分割的无监督域的适应

Unsupervised Domain Adaptation for Mobile Semantic Segmentation based on Cycle Consistency and Feature Alignment

论文作者

Toldo, Marco, Michieli, Umberto, Agresti, Gianluca, Zanuttigh, Pietro

论文摘要

对语义细分的深层网络的监督培训需要大量标记的现实世界数据。为了解决这个问题,一个普遍被利用的解决方法是使用合成数据进行培训,但是在分析与培训集具有略有统计属性的数据时,深层网络的性能下降。在这项工作中,我们提出了一种新颖的无监督领域适应性(UDA)策略,以解决现实世界和合成表示之间的域转移问题。基于循环一致性框架的对抗模型执行合成和真实域之间的映射。然后将数据馈送到执行语义分割任务的Mobilenet-V2体系结构中。在Mobilenet-V2的功能级别上工作的另外几个判别器,可以更好地对齐两个域分布的功能,并进一步提高性能。最后,利用了语义图的一致性。在对合成数据进行了初步监督培训之后,考虑其所有组件立即训练了整个UDA架构。实验结果表明,提出的策略如何在适应综合数据训练的细分网络中获得令人印象深刻的性能。轻巧的Mobilenet-V2体系结构的使用允许在自动驾驶汽车中使用的设备上部署其计算资源有限的设备。

The supervised training of deep networks for semantic segmentation requires a huge amount of labeled real world data. To solve this issue, a commonly exploited workaround is to use synthetic data for training, but deep networks show a critical performance drop when analyzing data with slightly different statistical properties with respect to the training set. In this work, we propose a novel Unsupervised Domain Adaptation (UDA) strategy to address the domain shift issue between real world and synthetic representations. An adversarial model, based on the cycle consistency framework, performs the mapping between the synthetic and real domain. The data is then fed to a MobileNet-v2 architecture that performs the semantic segmentation task. An additional couple of discriminators, working at the feature level of the MobileNet-v2, allows to better align the features of the two domain distributions and to further improve the performance. Finally, the consistency of the semantic maps is exploited. After an initial supervised training on synthetic data, the whole UDA architecture is trained end-to-end considering all its components at once. Experimental results show how the proposed strategy is able to obtain impressive performance in adapting a segmentation network trained on synthetic data to real world scenarios. The usage of the lightweight MobileNet-v2 architecture allows its deployment on devices with limited computational resources as the ones employed in autonomous vehicles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源