论文标题
具有膨胀效果的浅两相碎屑流的多层模型
Multilayer models for shallow two-phase debris flows with dilatancy effects
论文作者
论文摘要
我们在这里提出了一种具有膨胀效果的浅谷物流体混合物的多层模型。它可以看作是Bouchut等人中提出的深度平均模型的概括。 (2016年),包括通过考虑两层模型,混合晶粒流体层和上流流体层来进行膨胀效应,以允许它们之间的流体交换。在目前的工作中,改善了混合层的近似值,包括通过多层方法的速度和浓度的正常变化。在此处介绍的模型中,扩张效应尤其诱导了与多余的孔隙流体压力相关的两个阶段的非静态压力。我们在这里确定了解决两相浅碎片流模型的主要数值困难之一:从非平衡条件开始时,过量孔隙流体压力的强烈非线性行为和突然的变化。我们提出了一种简化的方法,以近似于均匀流的简单情况下近似过量的孔隙流体压力。我们的方法使得可以在正常方向上以合理的近似值引入两层或三层。计算有或没有侧壁摩擦的倾斜平面上均匀晶粒流动的分析溶液,并将其与所提出的模型进行了比较。在数值结果中,我们观察到具有混合物两层描述的提议模型准确地表示实验室实验中混合物表面的速度。这显然是由单层模型中深度平均速度的代表不足。我们的数值结果显示了膨胀法涉及的参数的重大影响,特别是对多余孔隙流体压力的时间演变的计算。
We present here a multilayer model for shallow grain-fluid mixtures with dilatancy effects. It can be seen as a generalization of the depth-averaged model presented in Bouchut et al. (2016), that includes dilatancy effects by considering a two-layer model, a mixture grain-fluid layer and an upper fluid layer, to allow the exchange of fluid between them. In the present work the approximation of the mixture layer is improved including normal variations of the velocities and concentrations of the two phases thanks to the multilayer approach. In the model presented here dilatancy effects induce in particular a non-hydrostatic pressure for both phases related to the excess pore fluid pressure. We identified here one of the main numerical difficulty of solving two-phase shallow debris flows models: the strongly non-linear behaviour and abrupt changes of the excess pore fluid pressure when starting from non-equilibrium conditions. We propose a simplified approach to approximate the excess pore fluid pressure in the simple case of uniform flows. Our method makes it possible to introduce two or three layers in the normal directions with a reasonable approximation. Analytical solutions for uniform grain-fluid flows over inclined planes, with and without side wall friction, are calculated and compared to the proposed model. In the numerical results, we observe that the proposed model with a two layer description of the mixture accurately represents the velocity measured at the surface of the mixture in the laboratory experiments. This is obviously poorly represented by the depth-averaged velocity in single-layer models. Our numerical results show a significant impact of the parameters involved in dilatancy law, in particular on the calculation of the time evolution of the excess pore fluid pressure.