论文标题
稳定的算法,用于平坦极限的无散射径向基础函数
A stable algorithm for divergence-free radial basis functions in the flat limit
论文作者
论文摘要
用于计算平滑径向基函数(RBF)插值的直接方法在数值上变得不稳定。 RBF-QR算法使用巧妙的基础技术改变了这种不良条件。我们扩展了该方法用于计算涉及基质值核的内介剂,特别是在球体上,在球体上,在平面极限下,在球体上没有表面差异。结果说明了该算法的有效性,显示了从散射点处的样品中的球体上的无差异矢量场提出的结果。
The direct method used for calculating smooth radial basis function (RBF) interpolants in the flat limit becomes numerically unstable. The RBF-QR algorithm bypasses this ill-conditioning using a clever change of basis technique. We extend this method for computing interpolants involving matrix-valued kernels, specifically surface divergence-free RBFs on the sphere, in the flat limit. Results illustrating the effectiveness of this algorithm are presented for a divergence-free vector field on the sphere from samples at scattered points.