论文标题

某些球形商的参数化,结构和bruhat顺序

Parametrization, structure and Bruhat order of certain spherical quotients

论文作者

Chaput, Pierre-Emmanuel, Fresse, Lucas, Gobet, Thomas

论文摘要

令$ g $为一个还原的代数群,让$ z $成为lie代数的nilpotent元素$ e $ $ g $的稳定器。我们考虑$ z $在$ g $的国旗品种上的操作,我们专注于此操作具有有限数量的轨道(即$ z $是球形子组)的情况。例如,如果$ e $具有高度$ 2 $,则可以。在这种情况下,我们给出了$ z $ -Orbits的参数化,我们表明每个$ z $ -Orbit都有一个代数仿射捆绑结构。特别是,在$ a $的类型中,我们推断每个轨道都有天然细胞分解。为了研究轨道的(强)Bruhat顺序,我们对与Coxeter系统相关的某些商定义了抽象的部分顺序。在类型$ a $中,我们表明可以以这种方式描述$ z $ - 孔的bruhat顺序。

Let $G$ be a reductive algebraic group and let $Z$ be the stabilizer of a nilpotent element $e$ of the Lie algebra of $G$. We consider the action of $Z$ on the flag variety of $G$, and we focus on the case where this action has a finite number of orbits (i.e., $Z$ is a spherical subgroup). This holds for instance if $e$ has height $2$. In this case we give a parametrization of the $Z$-orbits and we show that each $Z$-orbit has a structure of algebraic affine bundle. In particular, in type $A$, we deduce that each orbit has a natural cell decomposition. In the aim to study the (strong) Bruhat order of the orbits, we define an abstract partial order on certain quotients associated to a Coxeter system. In type $A$, we show that the Bruhat order of the $Z$-orbits can be described in this way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源