论文标题

可共享的搜索查询理解的表示

Shareable Representations for Search Query Understanding

论文作者

Kumar, Mukul, Hu, Youna, Headden, Will, Goutam, Rahul, Lin, Heran, Yin, Bing

论文摘要

了解搜索查询对于购物搜索引擎至关重要,以提供令人满意的客户体验。流行的购物搜索引擎每年都会收到数十亿个独特的查询,每种查询都可以描绘数百个用户的喜好或意图中的任何一种。为了获得正确的结果,必须是已知的查询,例如“便宜的舞会礼服”不仅旨在表现出某种产品类型的结果,而且还旨在表现出低价的产品。示例称为查询意图,还包括作者,品牌,年龄组的偏好,或仅仅是客户服务的需求。伯特(Bert)之类的最新作品证明了大型变压器编码器体系结构的成功,并在各种NLP任务上进行了培训。我们适应了这样的体系结构以了解搜索查询的意图,并描述方法以说明搜索查询数据的噪声和稀疏性。我们还描述了在延迟要求低的上下文中托管变压器编码器模型的成本效益方法。通过正确的域特异性培训,我们可以建立一个可共享的深度学习模型,其内部表示形式可以重复使用,以用于各种查询理解任务,包括查询意图识别。模型共享允许在推理时间提供更少的大型模型,并提供了一个快速构建和推出新搜索查询分类器的平台。

Understanding search queries is critical for shopping search engines to deliver a satisfying customer experience. Popular shopping search engines receive billions of unique queries yearly, each of which can depict any of hundreds of user preferences or intents. In order to get the right results to customers it must be known queries like "inexpensive prom dresses" are intended to not only surface results of a certain product type but also products with a low price. Referred to as query intents, examples also include preferences for author, brand, age group, or simply a need for customer service. Recent works such as BERT have demonstrated the success of a large transformer encoder architecture with language model pre-training on a variety of NLP tasks. We adapt such an architecture to learn intents for search queries and describe methods to account for the noisiness and sparseness of search query data. We also describe cost effective ways of hosting transformer encoder models in context with low latency requirements. With the right domain-specific training we can build a shareable deep learning model whose internal representation can be reused for a variety of query understanding tasks including query intent identification. Model sharing allows for fewer large models needed to be served at inference time and provides a platform to quickly build and roll out new search query classifiers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源