论文标题
自主振荡器链中的孤立相波
Solitary phase waves in a chain of autonomous oscillators
论文作者
论文摘要
在本文中,我们研究了在无限晶格上使用最近的邻居色散耦合的自维持振荡器的相波。为了分析潜在的动力学,我们用QC的准孔子来近似晶格。然后将所得的部分差分模型进一步降低到Gardner方程,该方程预测了基本孤立结构的许多特性。使用原始晶格方程上的迭代过程,我们确定了我们称为Flatons的孤立波,扭结和类似平坦的孤子的形状。直接的数值实验表明,孤子和弗拉顿在晶格上的相互作用非常干净。总而言之,QC和Gardner方程式都可以很好地预测离散模式及其动态。
In the present paper we study phase waves of self-sustained oscillators with a nearest neighbor dispersive coupling on an infinite lattice. To analyze the underlying dynamics we approximate the lattice with a quasi-continuum, QC. The resulting partial differential model is then further reduced to the Gardner equation which predicts many properties of the underlying solitary structures. Using an iterative procedure on the original lattice equations we determine the shapes of solitary waves, kinks, and the flat-like solitons, that we refer to as flatons. Direct numerical experiments reveal that the interaction of solitons and flatons on the lattice is notably clean. All in all we find that both the QC and the Gardner equation predict remarkably well the discrete patterns and their dynamics.