论文标题
简单的重量模块,具有有限维的重量空间
Simple weight modules with finite-dimensional weight spaces over Witt superalgebras
论文作者
论文摘要
Let $A_{m,n}$ be the tensor product of the Laurient polynomial algebra in $m$ even variables and the exterior algebra in $n$ odd variables over the complex field $\bC$, and the Witt superalgebra $W_{m,n}$ be the Lie superalgebra of superderivations of $A_{m,n}$.在本文中,我们将简单的权重$ w_ {m,n} $模块与有限维权重空间相对于$ w_ {m,0} $的标准cartan代数。每个这样的模块都是张量模块的简单商,也是重量最高类型的模块。
Let $A_{m,n}$ be the tensor product of the Laurient polynomial algebra in $m$ even variables and the exterior algebra in $n$ odd variables over the complex field $\bC$, and the Witt superalgebra $W_{m,n}$ be the Lie superalgebra of superderivations of $A_{m,n}$. In this paper, we classify the simple weight $W_{m,n}$ modules with finite-dimensional weight spaces with respect to the standard Cartan algebra of $W_{m,0}$. Every such module is either a simple quotient of a tensor module or a module of highest weight type.