论文标题
卡尔曼估计具有不连续Lipschitz系数的复杂二阶椭圆算子
Carleman estimate for complex second order elliptic operators with discontinuous Lipschitz coefficients
论文作者
论文摘要
在本文中,我们为复杂的二阶椭圆操作员提供了当地的卡尔曼估计,其Lipschitz系数具有跳跃不连续性。在[bl]和[dcflvw]中的参数中梳理结果,我们提出了一种基本方法,以在系数上的最佳规则性假设下得出Carleman估计值。
In this paper, we derive a local Carleman estimate for the complex second order elliptic operator with Lipschitz coefficients having jump discontinuities. Combing the result in [BL] and the arguments in [DcFLVW], we present an elementary method to derive the Carleman estimate under the optimal regularity assumption on the coefficients.