论文标题
局部存在相对论磁流失动力学中的接触不连续性
Local Existence of Contact Discontinuities in Relativistic Magnetohydrodynamics
论文作者
论文摘要
我们研究了相对论磁流失动力学系统的接触不连续性的自由边界问题。接触不连续的表面是该系统的一个特征,其压力,速度和磁场的不连续性没有流动,而密度,熵和温度可能会跳跃。对于二维情况,我们证明了自由边界问题的独特解决方案的Sobolev空间中的局部时间存在,前提是在初始不连续性的每个点上满足了压力的正常衍生物的跳跃瑞利 - 泰勒符号条件。
We study the free boundary problem for a contact discontinuity for the system of relativistic magnetohydrodynamics. A surface of contact discontinuity is a characteristic of this system with no flow across the discontinuity for which the pressure, the velocity and the magnetic field are continuous whereas the density, the entropy and the temperature may have a jump. For the two-dimensional case, we prove the local-in-time existence in Sobolev spaces of a unique solution of the free boundary problem provided that the Rayleigh--Taylor sign condition on the jump of the normal derivative of the pressure is satisfied at each point of the initial discontinuity.