论文标题
强大的脑电磁共振图像分割的脑积水患者:硬和软注意
Robust Brain Magnetic Resonance Image Segmentation for Hydrocephalus Patients: Hard and Soft Attention
论文作者
论文摘要
脑电图患者的脑磁共振(MR)分割被认为是一项具有挑战性的工作。编码来自不同个体的大脑解剖结构的变化不可轻松实现。该任务变得更加困难,特别是当考虑了脑积水患者的图像数据时,通常具有较大的变形,并且与正常受试者有显着差异。在这里,我们提出了一种新型策略,具有硬关注模块,以解决脑积水MR图像的分割问题。我们的主要贡献是三倍:1)使用基于多ATLAS的方法和VoxelMorph工具,硬注意模块生成粗分割图,该工具指导后续的分割过程并改善其稳健性; 2)软主管模块将注意力集中在捕获精确的上下文信息中,从而进一步提高了细分精度; 3)我们通过细分岛岛,丘脑和许多其他利益区域(ROI)来验证我们的方法,这些区域对于在实际临床情况下量化脑积水患者的大脑MR图像至关重要。当分割所有17种意识相关的ROI时,所提出的方法可实现大大提高的鲁棒性和准确性,这些ROI具有很大的不同受试者的变化。据我们所知,这是第一项采用深度学习来解决脑积分脑患者的脑部分割问题的工作。
Brain magnetic resonance (MR) segmentation for hydrocephalus patients is considered as a challenging work. Encoding the variation of the brain anatomical structures from different individuals cannot be easily achieved. The task becomes even more difficult especially when the image data from hydrocephalus patients are considered, which often have large deformations and differ significantly from the normal subjects. Here, we propose a novel strategy with hard and soft attention modules to solve the segmentation problems for hydrocephalus MR images. Our main contributions are three-fold: 1) the hard-attention module generates coarse segmentation map using multi-atlas-based method and the VoxelMorph tool, which guides subsequent segmentation process and improves its robustness; 2) the soft-attention module incorporates position attention to capture precise context information, which further improves the segmentation accuracy; 3) we validate our method by segmenting insula, thalamus and many other regions-of-interests (ROIs) that are critical to quantify brain MR images of hydrocephalus patients in real clinical scenario. The proposed method achieves much improved robustness and accuracy when segmenting all 17 consciousness-related ROIs with high variations for different subjects. To the best of our knowledge, this is the first work to employ deep learning for solving the brain segmentation problems of hydrocephalus patients.