论文标题
朱莉娅(Julia)的拉普拉斯人(Laplacians)
Laplacians on Julia sets of rational maps
论文作者
论文摘要
朱莉娅集合的研究提供了一种新的自然方式来查看分形。当数学家调查了Misiurewicz的特殊类别的理性地图时,他们发现有一个朱莉娅套装,它是众所周知的分形Sierpinski垫圈同构的。在本文中,我们采用了基加米的方法,从而在Sierpinski垫片上产生了新的Laplacians的结构,例如朱莉娅套装,具有动态不变的特性。
The study of Julia sets gives a new and natural way to look at fractals. When mathematicians investigated the special class of Misiurewicz's rational maps, they found out that there is a Julia set which is homeomorphic to a well known fractal, the Sierpinski gasket. In this paper, we apply the method of Kigami to give rise to a new construction of Laplacians on the Sierpinski gasket like Julia sets with a dynamically invariant property.