论文标题

非共同概率中的芯多项式

Wick polynomials in non-commutative probability

论文作者

Ebrahimi-Fard, K., Patras, F., Tapia, N., Zambotti, L.

论文摘要

在非共同概率理论的背景下,研究了Wick多项式和Wick产品。结果表明,可以通过特定的HOPF代数的角色组的作用来定义和相关的自由,布尔值和有条件的宽度多项式。这些结果概括了我们先前对经典概率理论中累积和wick产物的HOPF代数方法的发展。

Wick polynomials and Wick products are studied in the context of non-commutative probability theory. It is shown that free, boolean and conditionally free Wick polynomials can be defined and related through the action of the group of characters over a particular Hopf algebra. These results generalize our previous developments of a Hopf algebraic approach to cumulants and Wick products in classical probability theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源