论文标题

多剂引理

Multi-Secant Lemma

论文作者

Kaminski, Yirmeyahu J., Kanel-Belov, Alexei, Teicher, Mina

论文摘要

我们提出了对经典三局引理的新概括。我们的方法与以前的概括完全不同。令$ x $成为等等的投影尺寸$ d $。对于给定的$ k \ leq d + 1 $,我们对研究各种$ k $ secants的研究感兴趣。经典的三角弯曲只是考虑了$ k = 3 $而在其他地方考虑$ k = d + 2 $的情况。订单的额外订单从$ 4 $到$ d + 1 $为我们的主要结果提供服务。在本文中,我们证明,如果$ k $ secant($ k \ leq d + 1 $)满足以下三个条件:(i)每一个$ x $中的每个点都会通过$ x $中的每个点,至少要通过一个$ k $ secant,(ii)$ k $ - secect的多样性,$ k $ -secant your quant $ k + s $ k + s $ k + s $ k + s $ - 然后,品种$ x $可以嵌入到$ p^{d+1} $中。这里介绍的新假设是我们称之为强连接性是必不可少的,因为在某个示例中,没有纳入该假设的幼稚概括失败。本文以一些关于强连通性假设的本质的猜想结束。

We present a new generalization of the classical trisecant lemma. Our approach is quite different from previous generalizations. Let $X$ be an equidimensional projective variety of dimension $d$. For a given $k \leq d + 1$, we are interested in the study of the variety of $k$-secants. The classical trisecant lemma just considers the case where $k = 3$ while elsewhere the case $k = d + 2$ is considered. Secants of order from $4$ to $d + 1$ provide service for our main result. In this paper, we prove that if the variety of $k$-secants ($k \leq d + 1$) satisfies the three following conditions: (i) trough every point in $X$, passes at least one $k$-secant, (ii) the variety of $k$-secant satisfies a strong connectivity property that we defined in the sequel, (iii) every $k$-secant is also a ($k+1$)-secant, then the variety $X$ can be embedded into $P^{d+1}$. The new assumption, introduced here, that we called strong connectivity is essential because a naive generalization that does not incorporate this assumption fails as we show in some example. The paper concludes with some conjectures concerning the essence of the strong connectivity assumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源