论文标题

至少$ 2 $ - vertex-twinless连接跨越子图问题

Minimum $2$-vertex-twinless connected spanning subgraph problem

论文作者

Jaberi, Raed

论文摘要

给定$ 2 $ - vertex-twinless连接的有向图$ g =(v,e)$,至少$ 2 $ 2 $ - vertex-twinless-twinless连接的跨越子段问题是找到一个最小的基数边缘子集$ e^{t} \ subseteq e $,以便该子$(v,e^,e^,e^t} $ 2 $ 2 $ 2 $ 2 $ - 令$ g^{1} $为$ g $的最小$ 2 $ 2 $ -VERTEX连接子图。在本文中,我们介绍了$(2+a_ {t}/2)$ - 最低$ 2 $ -2 $ - vertex-twinless-twinless twinless connected跨越子段问题的近似算法,其中$ a_ {t} $是$ g^{1} $中的无二个无双重关节点的数量。

Given a $2$-vertex-twinless connected directed graph $G=(V,E)$, the minimum $2$-vertex-twinless connected spanning subgraph problem is to find a minimum cardinality edge subset $E^{t} \subseteq E$ such that the subgraph $(V,E^{t})$ is $2$-vertex-twinless connected. Let $G^{1}$ be a minimal $2$-vertex-connected subgraph of $G$. In this paper we present a $(2+a_{t}/2)$-approximation algorithm for the minimum $2$-vertex-twinless connected spanning subgraph problem, where $a_{t}$ is the number of twinless articulation points in $G^{1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源