论文标题

动态大脑网络的复发量化分析

Recurrence Quantification Analysis of Dynamic Brain Networks

论文作者

Lopes, Marinho A., Zhang, Jiaxiang, Krzemiński, Dominik, Hamandi, Khalid, Chen, Qi, Livi, Lorenzo, Masuda, Naoki

论文摘要

证据表明,大脑网络动力学是大脑功能和功能障碍的关键决定因素。在这里,我们提出了一个新框架,以根据复发分析评估大脑网络的动态。我们的框架使用复发图和复发量化分析来表征动态网络。对于静止状态的磁脑力学动态功能网络(DFN),我们发现癫痫患者的功能网络比健康对照组更快。这表明DFN的复发可以用作癫痫的生物标志物。对于立体声脑电图数据,我们发现在发作发作之前出现了参与癫痫发作的DFN,并且复发分析使我们能够检测癫痫发作。我们进一步观察到癫痫发作前后的不同DFN,这可能会为防止癫痫发作的神经刺激策略提供信息。我们的框架还可以用于了解健康脑功能和除癫痫以外的其他神经系统疾病中的DFN。

Evidence suggests that brain network dynamics is a key determinant of brain function and dysfunction. Here we propose a new framework to assess the dynamics of brain networks based on recurrence analysis. Our framework uses recurrence plots and recurrence quantification analysis to characterize dynamic networks. For resting-state magnetoencephalographic dynamic functional networks (dFNs), we have found that functional networks recur more quickly in people with epilepsy than healthy controls. This suggests that recurrence of dFNs may be used as a biomarker of epilepsy. For stereo electroencephalography data, we have found that dFNs involved in epileptic seizures emerge before seizure onset, and recurrence analysis allows us to detect seizures. We further observe distinct dFNs before and after seizures, which may inform neurostimulation strategies to prevent seizures. Our framework can also be used for understanding dFNs in healthy brain function and in other neurological disorders besides epilepsy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源