论文标题
第一个加权总和的权力,第一个分配的伯努利号码模型p
Powers of two weighted sum of the first p divided Bernoulli numbers modulo p
论文作者
论文摘要
我们表明,Modulo一些奇数P,第一个P-2的两个加权总和的幂等于Bernoulli数字等于Agoh-Giuga商加上P-2字母上的置换次数的两倍,均匀数量,与身份不同。我们提供了Wieferich Primes的组合表征,以及P^2的Primes P,将Fermat商Q_P(2)划分。
We show that, modulo some odd prime p, the powers of two weighted sum of the first p-2 divided Bernoulli numbers equals the Agoh-Giuga quotient plus twice the number of permutations on p-2 letters with an even number of ascents and distinct from the identity. We provide a combinatorial characterization of Wieferich primes, as well as of primes p for which p^2 divides the Fermat quotient q_p(2).