论文标题
限制量子动力学的通用误差
Universal Error Bound for Constrained Quantum Dynamics
论文作者
论文摘要
在量子力学中众所周知,希尔伯特(Hilbert)亚空间之间的较大能量差距和频谱的其余部分可以抑制从子空间内的量子状态到外部量子的过渡,这是由于将这些状态混合在一起的其他耦合,从而大致导致子空间内的受约束动力学。尽管该陈述已被广泛用于在各种情况下近似量子动力学,但缺乏一般和定量的理由。在这里,我们建立了一个基于可观察到的误差,以在通用间隙量子系统中进行这种约束型型近似。这种通用界限是时间的线性函数,只有后者比前者小得多,仅涉及能量差距和耦合强度。我们证明,通过简单的模型,界面上的截距或斜率是渐近饱和的。我们将结果推广到具有局部相互作用的量子多体系统,在$ d $ dimensions中,耦合强度在热力学极限中的差异在热力学极限中差异,而误差的增长速度不超过power Law $ t^{d+1} $。我们的工作建立了关于非平衡量子动力学的普遍和严格的结果。
It is well known in quantum mechanics that a large energy gap between a Hilbert subspace of specific interest and the remainder of the spectrum can suppress transitions from the quantum states inside the subspace to those outside due to additional couplings that mix these states, and thus approximately lead to a constrained dynamics within the subspace. While this statement has widely been used to approximate quantum dynamics in various contexts, a general and quantitative justification stays lacking. Here we establish an observable-based error bound for such a constrained-dynamics approximation in generic gapped quantum systems. This universal bound is a linear function of time that only involves the energy gap and coupling strength, provided that the latter is much smaller than the former. We demonstrate that either the intercept or the slope in the bound is asymptotically saturable by simple models. We generalize the result to quantum many-body systems with local interactions, for which the coupling strength diverges in the thermodynamic limit while the error is found to grow no faster than a power law $t^{d+1}$ in $d$ dimensions. Our work establishes a universal and rigorous result concerning nonequilibrium quantum dynamics.