论文标题

使用参考通道的独立组件分析从磁脑信号中除去的外部噪声

External noise removed from magnetoencephalographic signal using Independent Component Analyses of reference channels

论文作者

Hanna, Jeff, Kim, Cora, Müller-Voggel, Nadia

论文摘要

背景:除数据通道外,许多磁脑摄影仪(MEG)还含有一组参考通道,远离头部较远的参考通道,这些引物提供了有关不源自大脑的磁场的信息。该信息用于减去非神经起源的来源,该来源具有几何或最少平方(LMS)方法。特别是LMS方法往往会偏向更恒定的噪声源,并且通常无法消除间歇性的噪声。 新方法:为了更好地识别和消除外部磁噪声,我们建议直接在MEG参考通道上执行ICA。在大多数情况下,这会产生多个组件,这些组件是具有不同时空模式的外部噪声源的明确摘要。我们提出了两种算法,用于从数据中识别和删除此类噪声组件,在许多情况下可以显着提高数据质量。 结果:我们使用包含大脑源和外部噪声源的正向模型进行了模拟。首先,采用了传统的基于LMS的方法。尽管这消除了大量的噪音,但仍然存在很大一部分。在许多情况下,可以使用所提出的技术去除这一部分,而几乎没有误报。 与现有方法的比较:所提出的方法消除了现有基于LMS的方法往往不敏感的大量噪声。 结论:所提出的方法补充并扩展了传统的基于参考的噪声校正,几乎没有额外的计算成本和假阳性的可能性很小。任何具有参考渠道的MEG系统都可以从其使用中获利,尤其是在具有间歇性噪声源的实验室中。

Background: Many magnetoencephalographs (MEG) contain, in addition to data channels, a set of reference channels positioned relatively far from the head that provide information on magnetic fields not originating from the brain. This information is used to subtract sources of non-neural origin, with either geometrical or least mean squares (LMS) methods. LMS methods in particular tend to be biased toward more constant noise sources and are often unable to remove intermittent noise. New Method: To better identify and eliminate external magnetic noise, we propose performing ICA directly on the MEG reference channels. This in most cases produces several components which are clear summaries of external noise sources with distinct spatio-temporal patterns. We present two algorithms for identifying and removing such noise components from the data which can in many cases significantly improve data quality. Results: We performed simulations using forward models that contained both brain sources and external noise sources. First, traditional LMS-based methods were applied. While this removed a large amount of noise, a significant portion still remained. In many cases, this portion could be removed using the proposed technique, with little to no false positives. Comparison with existing method(s): The proposed method removes significant amounts of noise to which existing LMS-based methods tend to be insensitive. Conclusions: The proposed method complements and extends traditional reference based noise correction with little extra computational cost and low chances of false positives. Any MEG system with reference channels could profit from its use, particularly in labs with intermittent noise sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源