论文标题
某些二次序列的最小常见倍数的非平凡有效下限
Nontrivial effective lower bounds for the least common multiple of some quadratic sequences
论文作者
论文摘要
本文致力于研究数字$ l_ {c,m,n}:= \ mathrm {lcm} \ {m^2+c,(m+1)^2+c,\ dots,n^2+c \} $,$ c,m,m,n $是$ m \ m \ leq n $。确切地说,我们证明$ l_ {c,m,n} $是有理数\ [\ frac {\ displaystyle \ prod_ {k = m}^{n}^{n} \ left(k^2+c \ right)} {c \ cdot (n-m)!\ displayStyle \ prod_ {k = 1}^{n-m} \ left(k^2+4c \ right)},\],我们(作为结果)$ l_ {c,m,n} $的某些非平地下限。例如,我们证明,如果$ n- \ frac {1} {2} n^{2/3} \ leq m \ leq n $,那么我们有$ l_ {c,m,m,n} \geqλ(c)\ cdot n e^e^e^e^{3(n-m)} $,$ c) π^2} {3} c - \ frac {5} {12}}}}} {(2π)^{3/2} c} $。此外,必须指出的是,我们的方法(关注交换代数)是新的,与Farhi,Oon和Hong先前使用的方法不同。
This paper is devoted to studying the numbers $L_{c,m,n} := \mathrm{lcm}\{m^2+c ,(m+1)^2+c , \dots , n^2+c\}$, where $c,m,n$ are positive integers such that $m \leq n$. Precisely, we prove that $L_{c,m,n}$ is a multiple of the rational number \[\frac{\displaystyle\prod_{k=m}^{n}\left(k^2+c\right)}{c \cdot (n-m)!\displaystyle\prod_{k=1}^{n-m}\left(k^2+4c\right)} ,\] and we derive (as consequences) some nontrivial lower bounds for $L_{c,m,n}$. We prove for example that if $n- \frac{1}{2} n^{2/3} \leq m \leq n$, then we have $L_{c,m,n} \geq λ(c) \cdot n e^{3 (n - m)}$, where $λ(c) := \frac{e^{- \frac{2 π^2}{3} c - \frac{5}{12}}}{(2 π)^{3/2} c}$. Further, it must be noted that our approach (focusing on commutative algebra) is new and different from those using previously by Farhi, Oon and Hong.