论文标题
使用智能卡数据对地铁系统进行基于分配的路径选择估计
Assignment-based Path Choice Estimation for Metro Systems Using Smart Card Data
论文作者
论文摘要
城市铁路服务是许多城市公共交通的主要手段。要了解拥挤模式并制定系统中有效的操作策略,获得路径选择很重要。本文提出了使用自动票价收集(AFC)数据的基于任务的路径选择估计框架。该框架捕获了电台之间拥挤的固有相关性,以及路径选择与落后之间的相互作用。路径选择估计是作为优化问题提出的。由于非分析约束和非线性方程约束,原始问题是棘手的。提出了一个解决方案程序将原始问题分解为三个可拖延的子问题,可以有效地解决。使用香港大众运输铁路(MTR)系统中的合成数据和现实世界中的AFC数据对该模型进行验证。合成数据测试验证了模型在估计路径选择参数方面的有效性,该参数可以优于基于精度和效率的纯粹基于仿真的优化方法。使用实际数据的测试结果表明,估计的路径共享比调查衍生的路径份额和统一路径共享更合理。还验证了不同初始值和不同案例研究日期的模型鲁棒性。
Urban rail services are the principal means of public transportation in many cities. To understand the crowding patterns and develop efficient operation strategies in the system, obtaining path choices is important. This paper proposed an assignment-based path choice estimation framework using automated fare collection (AFC) data. The framework captures the inherent correlation of crowding among stations, as well as the interaction between path choice and left behind. The path choice estimation is formulated as an optimization problem. The original problem is intractable because of a non-analytical constraint and a non-linear equation constraint. A solution procedure is proposed to decompose the original problem into three tractable sub-problems, which can be solved efficiently. The model is validated using both synthetic data and real-world AFC data in Hong Kong Mass Transit Railway (MTR) system. The synthetic data test validates the model's effectiveness in estimating path choice parameters, which can outperform the purely simulation-based optimization methods in both accuracy and efficiency. The test results using actual data show that the estimated path shares are more reasonable than survey-derived path shares and uniform path shares. Model robustness in terms of different initial values and different case study dates are also verified.