论文标题

亚采比图中的独立统治

Independent Domination in Subcubic Graphs

论文作者

Akbari, A., Akbari, S., Doosthosseini, A., Hadizadeh, Z., Henning, Michael A., Naraghi, A.

论文摘要

如果每个顶点在$ s $相邻的$ s $中,则图表$ g $中的$ s $顶点是一个主体集。如果此外,$ s $是独立的集合,则$ s $是独立的主导套装。 $ g $的独立支配数字$ i(g)$是$ g $中独立支配的最低基数。 In 2013 Goddard and Henning [Discrete Math 313 (2013), 839--854] conjectured that if $G$ is a connected cubic graph of order $n$, then $i(G) \le \frac{3}{8}n$, except if $G$ is the complete bipartite graph $K_{3,3}$ or the $5$-prism $C_5 \, \Box \,K_2 $。此外,他们构建了两个无限的连接的立方图家族,独立统治了八分之三。他们指出,也许对于$ n> 10美元来说,这两个家庭只是平等所拥有的家庭。在本文中,我们提供了一个新的连接立方图的系列$ g $ $ n $的$ g $,以便$ i(g)= \ frac {3} {8} n $。我们还表明,如果$ g $是一个没有孤立顶点的订单$ n $的亚立方图,则$ i(g)\ le \ frac {1} {2} {2} n $,我们表征了在此界限中实现平等的图。

A set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in $S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. In 2013 Goddard and Henning [Discrete Math 313 (2013), 839--854] conjectured that if $G$ is a connected cubic graph of order $n$, then $i(G) \le \frac{3}{8}n$, except if $G$ is the complete bipartite graph $K_{3,3}$ or the $5$-prism $C_5 \, \Box \, K_2$. Further they construct two infinite families of connected cubic graphs with independent domination three-eighths their order. They remark that perhaps it is even true that for $n > 10$ these two families are only families for which equality holds. In this paper, we provide a new family of connected cubic graphs $G$ of order $n$ such that $i(G) = \frac{3}{8}n$. We also show that if $G$ is a subcubic graph of order $n$ with no isolated vertex, then $i(G) \le \frac{1}{2}n$, and we characterize the graphs achieving equality in this bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源