论文标题
神经网络层析成像
Neural Network Tomography
论文作者
论文摘要
网络层析成像是网络监视领域的经典研究问题,是指使用选定的端到端路径测量值推断未满足网络属性的方法。在研究社区中,通常根据已知网络拓扑,相关路径测量,有限的故障节点/链接或什至特殊网络协议支持的界数的假设研究网络断层扫描。网络层析成像的适用性受这些强大的假设的限制,因此经常将其定位在理论世界中。在这方面,我们通过建立不依赖任何这些假设或性能指标类型的通用框架来重新访问网络断层扫描。只有鉴于采样节点对的端到端路径性能指标,提出的框架,中层学,利用深层神经网络和数据增强来通过学习节点对之间的非线性关系以及潜在的未知拓扑/路由/路由特性来预测未衡量的性能指标。此外,可以使用中层来重建原始网络拓扑,这对于大多数网络计划任务至关重要。使用真实网络数据进行的广泛实验表明,与基线解决方案相比,中层学可以预测网络特征,并仅使用有限的测量数据来以更高的精度和鲁棒性来重建网络拓扑。
Network tomography, a classic research problem in the realm of network monitoring, refers to the methodology of inferring unmeasured network attributes using selected end-to-end path measurements. In the research community, network tomography is generally investigated under the assumptions of known network topology, correlated path measurements, bounded number of faulty nodes/links, or even special network protocol support. The applicability of network tomography is considerably constrained by these strong assumptions, which therefore frequently position it in the theoretical world. In this regard, we revisit network tomography from the practical perspective by establishing a generic framework that does not rely on any of these assumptions or the types of performance metrics. Given only the end-to-end path performance metrics of sampled node pairs, the proposed framework, NeuTomography, utilizes deep neural network and data augmentation to predict the unmeasured performance metrics via learning non-linear relationships between node pairs and underlying unknown topological/routing properties. In addition, NeuTomography can be employed to reconstruct the original network topology, which is critical to most network planning tasks. Extensive experiments using real network data show that comparing to baseline solutions, NeuTomography can predict network characteristics and reconstruct network topologies with significantly higher accuracy and robustness using only limited measurement data.