论文标题
重新审视椭圆的台球
Billiards in ellipses revisited
论文作者
论文摘要
我们证明了D. reznik关于椭圆中周期性台球轨道的一些最新实验观察结果。例如,在此类多边形的单参数家族中(由于Poncelet Porism的存在),周期性台球多边形角度的余弦的总和仍然是恒定的。在我们的证明中,我们使用几何和复杂的分析方法。
We prove some recent experimental observations of D. Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the one-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods.