论文标题
出现:自$ z \ sim6 $以来的星系合并率的经验预测
EMERGE: Empirical predictions of galaxy merger rates since $z\sim6$
论文作者
论文摘要
我们通过出现的星系形成的经验模型来探索星系 - - 元素合并速率。平均而言,我们发现,$ 2 $ 2%至$ 20 $的大型星系($ \ log_ {10}(m _ {*}/m _ {\ odot})\ geq 10.3 $)将经历每回合的主要合并。我们的模型预测,当后代恒星质量选择时,没有缩放为红移的星系合并速率,并表现出明显的恒星质量和质量比率依赖性。具体而言,在高质量和低红移时,主要合并更为频繁。我们显示合并对于星系的出色质量增长很重要,$ \ log_ {10}(m _ {*}/m _ {\ odot})\ gtrsim 11.0 $。对于最庞大的星系,主要合并主导了积聚的质量分数,贡献了多达90%的$ 90 $占总恒星质量的$ 90 $。我们强化了这些现象是恒星至中质质量关系的直接结果,这导致大量星系比低质量星系具有更高的主要合并可能性。我们的模型产生了与最近观察结果一致的星系对分数,表现出用幂律指数函数描述的最佳形式。使用已发布的观察时间尺度时,将这些对分数转换为合并率会导致预测不准确。我们发现,通过采用一个观察时间尺度,可以很好地映射这对分数,该观察时间尺度在$ t _ {\ mathrm {obs}} = -0.36(1+z)+2.39 $ [gyr]中,该观察时间尺度逐渐减小为$ t _ {\ mathrm {obs}} = -0.36(1+z)$ [gyr]。
We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, Emerge. On average, we find that between $2$ per cent and $20$ per cent of massive galaxies ($\log_{10}(m_{*}/M_{\odot}) \geq 10.3$) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies $\log_{10}(m_{*}/M_{\odot}) \gtrsim 11.0$. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as $90$ per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as $T_{\mathrm{obs}} = -0.36(1+z)+2.39$ [Gyr], assuming all observed pairs merge by $z=0$.