论文标题
使用硬度加权采样在分布上进行稳健的深度学习
Distributionally Robust Deep Learning using Hardness Weighted Sampling
论文作者
论文摘要
限制机器学习系统的故障对于安全至关重要的应用至关重要。为了提高机器学习系统的鲁棒性,已提出了分布鲁棒优化(DRO)作为经验风险最小化(ERM)的概括。但是,由于与ERM的随机梯度下降(SGD)优化器的广泛变体相比,由于可用于DRO的优化器的相对效率相对低效率,因此在深度学习中的使用受到了严格的限制。我们提出了用硬度加权采样的SGD,这是机器学习中DRO的原则性高效优化方法,在深度学习的背景下特别适合。与实践中的硬示例挖掘策略类似,所提出的算法可以直接实现和计算,并且与用于深度学习的基于SGD的优化器一样有效,需要最小的开销计算。与典型的临时硬采矿方法相反,我们证明了我们的DRO算法的收敛性,用于过度参数化的深度学习网络,并具有RELU激活以及有限数量的层和参数。我们对MRI中胎儿脑3D MRI分割和脑肿瘤分割的实验证明了我们方法的可行性和有用性。使用我们的硬度加权采样来训练最先进的深度学习管道,从而改善了自动胎儿大脑中解剖学变异的鲁棒性3D MRI分割,并改善了对脑肿瘤分割的图像协议变化的鲁棒性。我们的代码可从https://github.com/lucasfidon/hardnessweightedsampler获得。
Limiting failures of machine learning systems is of paramount importance for safety-critical applications. In order to improve the robustness of machine learning systems, Distributionally Robust Optimization (DRO) has been proposed as a generalization of Empirical Risk Minimization (ERM). However, its use in deep learning has been severely restricted due to the relative inefficiency of the optimizers available for DRO in comparison to the wide-spread variants of Stochastic Gradient Descent (SGD) optimizers for ERM. We propose SGD with hardness weighted sampling, a principled and efficient optimization method for DRO in machine learning that is particularly suited in the context of deep learning. Similar to a hard example mining strategy in practice, the proposed algorithm is straightforward to implement and computationally as efficient as SGD-based optimizers used for deep learning, requiring minimal overhead computation. In contrast to typical ad hoc hard mining approaches, we prove the convergence of our DRO algorithm for over-parameterized deep learning networks with ReLU activation and a finite number of layers and parameters. Our experiments on fetal brain 3D MRI segmentation and brain tumor segmentation in MRI demonstrate the feasibility and the usefulness of our approach. Using our hardness weighted sampling for training a state-of-the-art deep learning pipeline leads to improved robustness to anatomical variabilities in automatic fetal brain 3D MRI segmentation using deep learning and to improved robustness to the image protocol variations in brain tumor segmentation. Our code is available at https://github.com/LucasFidon/HardnessWeightedSampler.