论文标题
生物启发的Zno-氨基酸共晶中强量子限制效应和手性激子
Strong Quantum Confinement Effects and Chiral Excitons in Bio-Inspired ZnO-Amino Acid Co-Crystals
论文作者
论文摘要
阐明带隙工程背后的基本原理对于成功实施光子和光电设备中的半导体是至关重要的。最近,已经显示,可以在与氨基酸共结晶后修改宽,直接带隙半导体的带隙,而生物分子的作用仍然不清楚。在这里,通过探测和建模Zno-氨基酸共结晶的光发射特性,我们确定了氨基酸在该带隙调制中的作用,并证明了它们有效的手性传递到ZnO中的频段激发。我们的3D量子模型表明,共结晶中强带边缘发射蓝移移移可通过ZnO晶体晶格中氨基酸电位屏障的准周期分布来解释。总体而言,我们的发现表明,生物分子的共结晶可以用作真正的生物启发的手段,以诱导准粉状半导体中的手性量子限制效应。
Elucidating the underlying principles behind band gap engineering is paramount for the successful implementation of semiconductors in photonic and optoelectronic devices. Recently it has been shown that the band gap of a wide and direct band gap semiconductor, such as ZnO, can be modified upon co-crystallization with amino acids, with the role of the biomolecules remaining unclear. Here, by probing and modeling the light emitting properties of ZnO-amino acid co-crystals, we identify the amino acids role on this band gap modulation and demonstrate their effective chirality transfer to the inter-band excitations in ZnO. Our 3D quantum model suggests that the strong band edge emission blue shift in the co-crystals can be explained by a quasi-periodic distribution of amino acid potential barriers within the ZnO crystal lattice. Overall, our findings indicate that biomolecule co-crystallization can be used as a truly bio-inspired means to induce chiral quantum confinement effects in quasi-bulk semiconductors.