论文标题
Symboles Modulaire et postuit de Petersson
Symboles modulaires et produit de Petersson
论文作者
论文摘要
如Pollack和Stevens所述,我们重新审视了Eichler和Shimura的一些论文,以在模块化符号的空间上为相交产品提供代数配方(基于Farey符号)。我们定义了Eisenstein系列(Eisenstein-Dedekind-Stevens符号)的时期同态,并将相交产物的定义扩展到这些对象。我们以$γ$ 0(n)为合理时期为Eisenstein系列的空间构建一个计算方便的基础。给出了模块化组的亚组$γ$的farey符号和$γ$的有限指数的亚组$γ$',我们为$γ$的farey符号提供了算法结构。
We revisit some papers by Eichler and Shimura in order to give an algebraic formulation (based on Farey symbols) for the intersection product on the space of modular symbols, as described by Pollack and Stevens. We define the period homomorphism of an Eisenstein series (Eisenstein-Dedekind-Stevens symbol) and extend the definition of the intersection product to these objects. We construct a computationally convenient basis for the space of Eisenstein series for $Γ$ 0 (N) with rational periods. Given a Farey symbol for a subgroup $Γ$ of the modular group and a subgroup $Γ$ ' of finite index of $Γ$, we give an algorithmic construction for a Farey symbol for $Γ$ '.