论文标题
使用深层扩散过程从事件数据中学习动态和个性化的合并症网络
Learning Dynamic and Personalized Comorbidity Networks from Event Data using Deep Diffusion Processes
论文作者
论文摘要
合并症疾病通过在个体之间变化的复杂时间模式共同发生和进展。在电子健康记录中,我们可以观察到患者患有不同的疾病,但只能推断每种合并症之间的时间关系。从事件数据中学习这种时间模式对于理解疾病病理学和预测预后至关重要。为此,我们开发了深层扩散过程(DDP),以建模“动态合并症网络”,即通过动态图表示的合并症疾病对疾病的时间关系。 DDP包含以多维点过程建模的事件,其强度函数由动态加权图的边缘进行参数。图结构是由神经网络调节的,该神经网络将患者病史映射到边缘重量,从而为疾病轨迹提供了丰富的时间表示。 DDP参数将其分解为具有临床意义的成分,该组件能够实现与疾病病理学的准确风险预测和可理解表示的双重目的。我们使用癌症注册表数据在实验中说明了这些特征。
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals. In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition. Learning such temporal patterns from event data is crucial for understanding disease pathology and predicting prognoses. To this end, we develop deep diffusion processes (DDP) to model "dynamic comorbidity networks", i.e., the temporal relationships between comorbid disease onsets expressed through a dynamic graph. A DDP comprises events modelled as a multi-dimensional point process, with an intensity function parameterized by the edges of a dynamic weighted graph. The graph structure is modulated by a neural network that maps patient history to edge weights, enabling rich temporal representations for disease trajectories. The DDP parameters decouple into clinically meaningful components, which enables serving the dual purpose of accurate risk prediction and intelligible representation of disease pathology. We illustrate these features in experiments using cancer registry data.