论文标题
在平均曲率流的非均匀变体下演变的凸超曲面的捏合估计值
A Pinching Estimate for Convex Hypersurfaces Evolving Under a Nonhomogeneous Variant of Mean Curvature Flow
论文作者
论文摘要
我们研究了正常速度是主曲线的非均匀函数的封闭,凸出曲面的平均曲率流量的变体。我们表明,如果最初的超表面满足一定的捏合条件,则将其保存,流动将其收敛于重新缩放的球体。
We study a variant of the mean curvature flow for closed, convex hypersurfaces where the normal velocity is a nonhomogeneous function of the principal curvatures. We show that if the initial hypersurface satisfies a certain pinching condition, then this is preserved and the flow converges to a sphere under rescaling.