论文标题

在平均曲率流的非均匀变体下演变的凸超曲面的捏合估计值

A Pinching Estimate for Convex Hypersurfaces Evolving Under a Nonhomogeneous Variant of Mean Curvature Flow

论文作者

Espin, Tim

论文摘要

我们研究了正常速度是主曲线的非均匀函数的封闭,凸出曲面的平均曲率流量的变体。我们表明,如果最初的超表面满足一定的捏合条件,则将其保存,流动将其收敛于重新缩放的球体。

We study a variant of the mean curvature flow for closed, convex hypersurfaces where the normal velocity is a nonhomogeneous function of the principal curvatures. We show that if the initial hypersurface satisfies a certain pinching condition, then this is preserved and the flow converges to a sphere under rescaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源