论文标题
笛卡尔产品图的分数强匹配排除
Fractional strong matching preclusion for Cartesian product graphs
论文作者
论文摘要
Park和IHM在2011年推出的图形的强匹配数量是最小数量的顶点和边缘,其删除的删除导致图形既没有完美匹配也不是完美的匹配。作为概括,图的分数强匹配排除数是边缘和顶点的最小数量,其删除使所得的图形没有分数完美匹配。在本文中,我们获得了笛卡尔产品图的分数强匹配数。作为应用程序,获得了圆环网络的分数强匹配数。
The strong matching preclusion number of a graph, introduced by Park and Ihm in 2011, is the minimum number of vertices and edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, the fractional strong matching preclusion number of a graph is the minimum number of edges and vertices whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we obtain the fractional strong matching preclusion number for Cartesian product graphs. As an application, the fractional strong matching preclusion number for torus networks is obtained.