论文标题
社交网络的软推荐系统
A Soft Recommender System for Social Networks
论文作者
论文摘要
最近的社会推荐系统从友谊图中受益,可以进行准确的建议,认为社交网络中的朋友具有完全相同的兴趣和偏好。一些研究受益于硬聚类算法(例如K-均值),以确定用户之间的相似性,从而确定友谊程度。在本文中,我们迈出了一步,以确定真正的朋友提出更现实的建议。我们计算了用户之间的相似性以及用户与项目之间的依赖关系。我们的假设是,由于用户偏好的不确定性,模糊的聚类而不是经典的硬聚类在准确的建议中是有益的。我们合并了C均值算法,以获得不同的软用户群集的不同会员资格。然后,用户的相似性度量是根据软簇定义的。后来,在培训方案中,我们确定了用户和项目的潜在表示,并使用矩阵分解从巨大且稀疏的用户数据标签矩阵中提取。在参数调整中,我们发现了软体社会正规化和用户项目依赖项的影响的最佳系数。我们的实验结果确信,与基线社会推荐系统相比,提出的模糊相似性度量标准改善了实际数据中的建议。
Recent social recommender systems benefit from friendship graph to make an accurate recommendation, believing that friends in a social network have exactly the same interests and preferences. Some studies have benefited from hard clustering algorithms (such as K-means) to determine the similarity between users and consequently to define degree of friendships. In this paper, we went a step further to identify true friends for making even more realistic recommendations. we calculated the similarity between users, as well as the dependency between a user and an item. Our hypothesis is that due to the uncertainties in user preferences, the fuzzy clustering, instead of the classical hard clustering, is beneficial in accurate recommendations. We incorporated the C-means algorithm to get different membership degrees of soft users' clusters. Then, the users' similarity metric is defined according to the soft clusters. Later, in a training scheme we determined the latent representations of users and items, extracting from the huge and sparse user-item-tag matrix using matrix factorization. In the parameter tuning, we found the optimum coefficients for the influence of our soft social regularization and the user-item dependency terms. Our experimental results convinced that the proposed fuzzy similarity metric improves the recommendations in real data compared to the baseline social recommender system with the hard clustering.