论文标题

通过开放竞争推进MR图像重建的机器学习:2019 FastMRI挑战的概述

Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge

论文作者

Knoll, Florian, Murrell, Tullie, Sriram, Anuroop, Yakubova, Nafissa, Zbontar, Jure, Rabbat, Michael, Defazio, Aaron, Muckley, Matthew J., Sodickson, Daniel K., Zitnick, C. Lawrence, Recht, Michael P.

论文摘要

目的:在MR图像重建的机器学习领域进行研究,并面临开放的挑战。方法:我们为参与者提供了来自1,594次膝盖临床检查的原始K空间数据数据集。挑战的目的是从这些数据中重建图像。为了在现实的数据和尚不熟悉MR图像重建的人之间取得平衡,我们为多线圈和单线圈数据运行了多个轨道。我们根据定量图像指标进行了两阶段的评估,然后由放射科医生小组进行评估。挑战从2019年6月至12月进行。结果:我们总共收到了33项挑战提交。所有参与者都选择通过监督机器学习方法提交结果。结论:挑战导致了图像重建的机器学习的新发展,提供了对现场最新技术的见解,并突出了临床采用的剩余障碍。

Purpose: To advance research in the field of machine learning for MR image reconstruction with an open challenge. Methods: We provided participants with a dataset of raw k-space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi-coil and single-coil data. We performed a two-stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019. Results: We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches. Conclusion: The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源