论文标题
无监督的学习用于被动边界
Unsupervised Learning for Passive Beamforming
论文作者
论文摘要
可重新配置的智能表面(RIS)最近成为提高无线通信系统能量和光谱效率的有前途的候选人。但是,对反射元件的相移的单位模量限制使最佳无源光束化解决方案的设计成为一个具有挑战性的问题。常规的方法是使用半明确弛豫(SDR)技术找到次优溶液,但是最终的次优迭代算法通常会产生高复杂性,因此不能用于实时实现。在此激励的情况下,我们提出了一种深度学习方法,用于在RIS辅助系统中进行被动波束形成设计。特别是,使用无监督的学习机制对定制的深神网络进行了离线训练,该机制可以在线部署时进行实时预测。仿真结果表明,与基于SDR的方法相比,所提出的方法保持大部分性能,而大多数性能会显着降低计算复杂性。
Reconfigurable intelligent surface (RIS) has recently emerged as a promising candidate to improve the energy and spectral efficiency of wireless communication systems. However, the unit modulus constraint on the phase shift of reflecting elements makes the design of optimal passive beamforming solution a challenging issue. The conventional approach is to find a suboptimal solution using the semi-definite relaxation (SDR) technique, yet the resultant suboptimal iterative algorithm usually incurs high complexity, hence is not amenable for real-time implementation. Motivated by this, we propose a deep learning approach for passive beamforming design in RIS-assisted systems. In particular, a customized deep neural network is trained offline using the unsupervised learning mechanism, which is able to make real-time prediction when deployed online. Simulation results show that the proposed approach maintains most of the performance while significantly reduces computation complexity when compared with SDR-based approach.