论文标题

F(t)重力中的球形和圆柱溶液通过Noether对称方法

Spherical and cylindrical solutions in f (T) gravity by Noether Symmetry Approach

论文作者

Nurbaki, Ali Nur, Capozziello, Salvatore, Deliduman, Cemsinan

论文摘要

我们发现针对球形和圆柱对称四核的F(t)远程引力的精确溶液。采用的方法基于对约旦和爱因斯坦框架定义的点状拉格朗日人的noether对称性的搜索。运动的常数用于减少动力学系统。我们首先考虑在Jordan框架中定义的Lagrangian,用于球形对称的四局,并借助两个运动常数,我们消除了四个电位并整合了另一个。同一方法也克服了爱因斯坦框架中更复杂的结构。之后,我们获得了Jordan框架Lagrangian,用于一般的圆柱形对称四分之一。遵循球体对称情况中采用的相同过程,我们再次获得四元电位,然后获得精确的溶液。

We find exact solutions for f (T) teleparallel gravity for the cases of spherically and cylindrically symmetric tetrads. The adopted method is based on the search for Noether symmetries of point-like Lagrangians defined in Jordan and Einstein frames. Constants of motion are used to reduce the dynamical system.We first consider the Lagrangian defined in the Jordan frame for a spherically symmetric tetrad and, by the help of two constants of motion, we eliminate a tetrad potential and integrate the other. The more complicated structure in the Einstein frame is also overcome by the same method. After that we obtain the Jordan frame Lagrangian for a general cylindrically symmetric tetrad. Following the same procedure adopted in the spherically symmetric case, we again obtain the tetrad potentials and then the exact solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源