论文标题

基于事件的单光子雪崩二极管传感器的处理

Event-based Processing of Single Photon Avalanche Diode Sensors

论文作者

Afshar, Saeed, Hamilton, Tara Julia, Davis, Langdon, van Schaik, Andre, Delic, Dennis

论文摘要

在飞行模式的直接时间运行的单个光子雪崩二极管传感器阵列可以使用脉冲激光器执行3D成像。 SPAD成像仪以高框架速率运行,通常会产生大量嘈杂的嘈杂和大量冗余时空数据。这会导致通信瓶颈和不必要的数据处理。在这项工作中,我们针对此问题提出了一组神经形态处理解决方案。通过处理SPAD生成的时空模式并以基于事件的方式处理,提出的方法通过数量级来减少从传感器传递的输出数据的大小,同时在具有挑战性的识别任务的背景下增加输出数据的效用。为了证明这些结果,提出了第一个大规模的复杂SPAD成像数据集,其中涉及对具有背景杂物的飞机的高速视图识别。基于框架的SPAD成像数据集通过多种替代方法转换为基于事件的数据流,并使用一系列特征提取器网络和合并方法进行处理。将基于事件的处理方法的结果与通过基于框架但相同的体系结构处理原始框架数据集进行比较。结果表明,基于事件的方法在分类精度和输出数据速率方面都优于基于框架的方法。

Single Photon Avalanche Diode sensor arrays operating in direct time of flight mode can perform 3D imaging using pulsed lasers. Operating at high frame rates, SPAD imagers typically generate large volumes of noisy and largely redundant spatio-temporal data. This results in communication bottlenecks and unnecessary data processing. In this work, we propose a set of neuromorphic processing solutions to this problem. By processing the SPAD generated spatio-temporal patterns locally and in an event-based manner, the proposed methods reduce the size of output data transmitted from the sensor by orders of magnitude while increasing the utility of the output data in the context of challenging recognition tasks. To demonstrate these results, the first large scale complex SPAD imaging dataset is presented involving high-speed view-invariant recognition of airplanes with background clutter. The frame-based SPAD imaging dataset is converted via several alternative methods into event-based data streams and processed using a range of feature extractor networks and pooling methods. The results of the event-based processing methods are compared to processing the original frame-based dataset via frame-based but otherwise identical architectures. The results show the event-based methods are superior to the frame-based approach both in terms of classification accuracy and output data-rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源