论文标题

二维开尔文 - 霍尔姆霍尔茨不稳定性的模拟中的数值粘度

Numerical viscosity in simulations of the two-dimensional Kelvin-Helmholtz instability

论文作者

Obergaulinger, Martin, Aloy, Miguel-Ángel

论文摘要

开尔文 - 霍尔姆霍尔茨不稳定性是一种简单,定义明确的设置,用于评估求解流体动力学方程的不同数值方法的准确性。我们使用它来扩展对波浪传播模型和磁流失动力学模型中撕裂模式不稳定性模型中对收敛性和数值耗散的先前分析。为此,我们在不同分辨率下进行有或没有明确的物理粘度,进行二维模拟。通过我们的初始扰动激发的模式的生长比较,使我们能够估算两个空间重建方案的有效数值粘度(保留五阶单调性和二阶分段线性方案)。

The Kelvin-Helmholtz instability serves as a simple, well-defined setup for assessing the accuracy of different numerical methods for solving the equations of hydrodynamics. We use it to extend our previous analysis of the convergence and the numerical dissipation in models of the propagation of waves and in the tearing-mode instability in magnetohydrodynamic models. To this end, we perform two-dimensional simulations with and without explicit physical viscosity at different resolutions. A comparison of the growth of the modes excited by our initial perturbations allows us to estimate the effective numerical viscosity of two spatial reconstruction schemes (fifth-order monotonicity preserving and second-order piecewise linear schemes).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源