论文标题

非线性schrödinger方程的非主散射理论

Non-radial scattering theory for nonlinear Schrödinger equations with potential

论文作者

Dinh, Van Duong

论文摘要

我们考虑一类潜在的非线性schrödinger方程 \ [ i \ partial_t u +Δu -vu = \ pm | u |^αu,\ quad(t,x)\ in \ mathbb {r} \ times \ times \ mathbb {r}^3, \] 其中$ \ frac {4} {3} <α<4 $和$ v $是Kato Type的潜力。我们使用Dodson-Murphy的思想[Math。 res。 Lett。 25(6):1805---1825]。结果,我们证明了聚焦问题的能量散射,其数据低于基态阈值。我们的结果扩展了Hong [Commun的最新作品。纯应用。肛门。 15(5):1571--1601]和Hamano-ikeda [J. Evol。等。 2019]。我们还研究了全球解决方案的长时间动力学,以通过基态阈值数据与数据进行聚焦问题。

We consider a class of nonlinear Schrödinger equations with potential \[ i\partial_t u +Δu - Vu = \pm |u|^αu, \quad (t,x) \in \mathbb{R} \times \mathbb{R}^3, \] where $\frac{4}{3}<α<4$ and $V$ is a Kato-type potential. We establish a scattering criterion for the equation with non-radial initial data using the ideas of Dodson-Murphy [Math. Res. Lett. 25(6):1805--1825]. As a consequence, we prove the energy scattering for the focusing problem with data below the ground state threshold. Our result extends the recent works of Hong [Commun. Pure Appl. Anal. 15(5):1571--1601] and Hamano-Ikeda [J. Evol. Equ. 2019]. We also study long time dynamics of global solutions to the focusing problem with data at the ground state threshold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源