论文标题

关于加权图的Ricci-curvatures的总和

On the Sum of Ricci-Curvatures for Weighted Graphs

论文作者

Bai, Shuliang, Huang, An, Lu, Linyuan, Yau, Shing-Tung

论文摘要

在本文中,我们将lin-lu-yau的RICCI曲率推广到加权图,并给出一个简单的无极限定义。我们证明了加权图的RICCI曲率之和两个极端结果。 加权图$ g =(v,e,d)$是与距离函数$ d \ colon e \ to [0,\ infty)$相关的无向图$ g =(v,e)$。通过在可能的情况下重新定义权重,而不会损失一般性,我们假设对于任何边缘$ uv $,$ u $和$ v $之间的最短加权距离正好是$ d(u,v)$。现在考虑一个随机步行,其从顶点$ u $到其邻居$ v $(沿边缘$ UV $的跳动移动)的传递概率与$ w_ {uv}:= f(d(u,v))/d(u,v)/d(u,v)$的某些给定函数$ f(\ bulter)$成正比。我们首先将Lin-Lu-Yau的RICCI曲率定义概括为此加权图,并使用所谓的$ \ ast $ - 耦合函数提供$κ(x,y)$的简单无限表示。总曲率$ k(g)$被定义为所有边缘上$ g $的RICCI曲率的总和。我们证明了以下定理:如果$ f(\ bullet)$是一个降低的函数,则$ k(g)\ geq 2 | v | -2 | e | $;如果$ f(\ bullet)$是一个增加的功能,则$ k(g)\ leq 2 | v | -2 | e | $。当且仅当$ d $是一个恒定功能加上腰围至少$ 6 $时,这两个平等性都保持。 特别是,这些暗示着(未加权)图的高斯式定理,至少$ 6 $,其中图曲率是根据最佳传输来定义的。

In this paper, we generalize Lin-Lu-Yau's Ricci curvature to weighted graphs and give a simple limit-free definition. We prove two extremal results on the sum of Ricci curvatures for weighted graph. A weighted graph $G=(V,E,d)$ is an undirected graph $G=(V,E)$ associated with a distance function $d\colon E\to [0,\infty)$. By redefining the weights if possible, without loss of generality, we assume that the shortest weighted distance between $u$ and $v$ is exactly $d(u,v)$ for any edge $uv$. Now consider a random walk whose transitive probability from an vertex $u$ to its neighbor $v$ (a jump move along the edge $uv$) is proportional to $w_{uv}:=F(d(u,v))/d(u,v)$ for some given function $F(\bullet)$. We first generalize Lin-Lu-Yau's Ricci curvature definition to this weighted graph and give a simple limit-free representation of $κ(x, y)$ using a so called $\ast$-coupling functions. The total curvature $K(G)$ is defined to be the sum of Ricci curvatures over all edges of $G$. We proved the following theorems: if $F(\bullet)$ is a decreasing function, then $K(G)\geq 2|V| -2|E|$; if $F(\bullet)$ is an increasing function, then $K(G)\leq 2|V| -2|E|$. Both equalities hold if and only if $d$ is a constant function plus the girth is at least $6$. In particular, these imply a Gauss-Bonnet theorem for (unweighted) graphs with girth at least $6$, where the graph Ricci curvature is defined geometrically in terms of optimal transport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源