论文标题

元模式信息流:一种捕获精神分裂症中多模块化学连接性的方法

Meta-modal Information Flow: A Method for Capturing Multimodal Modular Disconnectivity in Schizophrenia

论文作者

Falakshahi, Haleh, Vergara, Victor M., Liu, Jingyu, Mathalon, Daniel H., Ford, Judith M., Voyvodic, James, Mueller, Bryon A., Belger, Aysenil, McEwen, Sarah, Potkin, Steven G., Preda, Adrian, Rokham, Hooman, Sui, Jing, Turner, Jessica A., Plis, Sergey, Calhoun, Vince D.

论文摘要

目的:相同现象的多模式测量提供了互补的信息,并突出了不同的观点,尽管每个观点都有自己的局限性。对单个方式的关注可能会导致不正确的推论,当研究现象是一种疾病时,这一点尤其重要。在本文中,我们介绍了一种利用多模式数据来解决精神分裂症(SZ)中脱节性和功能障碍的假设的方法。方法:我们从使用高斯图形模型(GGM)内外估算和可视化链接开始。然后,我们提出了一种基于模块化的方法,该方法可以应用于GGM,以确定在多模式数据集中与精神疾病相关的链接。通过模拟和真实数据,我们显示了我们的方法揭示了有关与疾病相关的网络中断的重要信息,这些信息以单一方式遗漏了。我们使用功能性MRI(FMRI),扩散MRI(DMRI)和结构MRI(SMRI)来计算低频波动(FALFF),分数各向异性(FA)和灰质(GM)浓度图的分数振幅。使用我们的模块化方法分析了这三种方式。结果:我们的结果显示缺少链接,这些链接仅由跨模式信息捕获,这些信息可能在组件之间的断开性中起重要作用。结论:我们在SZ患者的默认模式网络区域中确定了多模式(Falff,FA和GM)的断​​开性,这在单个模态中无法检测到。意义:所提出的方法为捕获在多个成像方式之间分布的信息提供了重要的新工具。

Objective: Multimodal measurements of the same phenomena provide complementary information and highlight different perspectives, albeit each with their own limitations. A focus on a single modality may lead to incorrect inferences, which is especially important when a studied phenomenon is a disease. In this paper, we introduce a method that takes advantage of multimodal data in addressing the hypotheses of disconnectivity and dysfunction within schizophrenia (SZ). Methods: We start with estimating and visualizing links within and among extracted multimodal data features using a Gaussian graphical model (GGM). We then propose a modularity-based method that can be applied to the GGM to identify links that are associated with mental illness across a multimodal data set. Through simulation and real data, we show our approach reveals important information about disease-related network disruptions that are missed with a focus on a single modality. We use functional MRI (fMRI), diffusion MRI (dMRI), and structural MRI (sMRI) to compute the fractional amplitude of low frequency fluctuations (fALFF), fractional anisotropy (FA), and gray matter (GM) concentration maps. These three modalities are analyzed using our modularity method. Results: Our results show missing links that are only captured by the cross-modal information that may play an important role in disconnectivity between the components. Conclusion: We identified multimodal (fALFF, FA and GM) disconnectivity in the default mode network area in patients with SZ, which would not have been detectable in a single modality. Significance: The proposed approach provides an important new tool for capturing information that is distributed among multiple imaging modalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源