论文标题
$λ$ - 构建与$λ$可价值的$λ分组相关的田地
$Λ$-buildings associated to quasi-split groups over $Λ$-valued fields
论文作者
论文摘要
令$ \ mathbf {g} $为准切片还原组,$ \ mathbb {k} $是配备估值$ω的Henselian字段:\ Mathbb {k}^{\ times} \ times} \ times} \rightArrowλ$,其中$λ$是$λ$,其中$λ$是一个不订购的Abelian组。 1972年,布鲁哈特(Bruhat)和山雀(Titt)建造了一栋建筑物,只要$λ$是$ \ mathbb {r} $的一个子组,只要$λ$是$ \ mathbf {g}(\ mathbb {k})$。在本文中,我们处理了$λ$没有假设的一般情况,并且我们构建了一个$ \ mathbf {g}(\ Mathbb {k})$ ACTS的集合。然后,从贝内特(Bennett)的意义上讲,我们证明这是一个$λ$建造。
Let $\mathbf{G}$ be a quasi-split reductive group and $\mathbb{K}$ be a Henselian field equipped with a valuation $ω:\mathbb{K}^{\times}\rightarrow Λ$, where $Λ$ is a non-zero totally ordered abelian group. In 1972, Bruhat and Tits constructed a building on which the group $\mathbf{G}(\mathbb{K})$ acts provided that $Λ$ is a subgroup of $\mathbb{R}$. In this paper, we deal with the general case where there are no assumptions on $Λ$ and we construct a set on which $\mathbf{G}(\mathbb{K})$ acts. We then prove that it is a $Λ$-building, in the sense of Bennett.