论文标题

在复杂网络上解开冲击扩散:通过图平面识别

Disentangling shock diffusion on complex networks: Identification through graph planarity

论文作者

Kumar, Sudarshan, Di Matteo, Tiziana, Chakrabarti, Anindya S.

论文摘要

划定集体动力学的大规模网络经常在节点之间表现出级联故障,从而导致全系统崩溃。这种现象的重要例子将包括财务和经济网络上的崩溃。这种网络中节点动力学的交织性质使得很难解散通过网络渗透的冲击的来源和目的地,该电击是一种称为反射性的属性。在本文中,提出了一种新颖的方法,该方法将矢量自重力模型与从网络的拓扑结构获得的唯一识别限制结合在一起,以独特地表征级联反应。特别是,我们表明网络的平面度使我们能够统计地估计与观察到的网络一致的动态过程,从而唯一地识别了从任何选择的震荡到网络中所有其他节点的冲击传播途径。我们分析了闭环中的遇险传播机制,从而详细描述了反馈回路在传输冲击中的影响。我们显示了在不同时间尺度上具有动态的两个网络中该算法的实用性和应用:全球GDP增长网络和库存网络。在这两种情况下,我们都认为该模型预测了美国发出的冲击的影响,将集中在发达国家的群集中,而发展中国家的反应非常柔和,这与过去十年来经验观察一致。

Large scale networks delineating collective dynamics often exhibit cascading failures across nodes leading to a system-wide collapse. Prominent examples of such phenomena would include collapse on financial and economic networks. Intertwined nature of the dynamics of nodes in such network makes it difficult to disentangle the source and destination of a shock that percolates through the network, a property known as reflexivity. In this article, a novel methodology is proposed which combines vector autoregression model with an unique identification restrictions obtained from the topological structure of the network to uniquely characterize cascades. In particular, we show that planarity of the network allows us to statistically estimate a dynamical process consistent with the observed network and thereby uniquely identify a path for shock propagation from any chosen epicenter to all other nodes in the network. We analyze the distress propagation mechanism in closed loops giving rise to a detailed picture of the effect of feedback loops in transmitting shocks. We show usefulness and applications of the algorithm in two networks with dynamics at different time-scales: worldwide GDP growth network and stock network. In both cases, we observe that the model predicts the impact of the shocks emanating from the US would be concentrated within the cluster of developed countries and the developing countries show very muted response, which is consistent with empirical observations over the past decade.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源