论文标题

FDFTNET:使用假检测微调网络面对假图像

FDFtNet: Facing Off Fake Images using Fake Detection Fine-tuning Network

论文作者

Jeon, Hyeonseong, Bang, Youngoh, Woo, Simon S.

论文摘要

由于生成对抗网络(GAN)的进步,如今创建伪造的图像和视频(例如“ Deepfake”)变得更加容易。此外,最近的研究(例如少量学习)可以创建高度现实的个性化假图像,只有几张图像。因此,深层的威胁被用于各种恶意意图,例如传播假图像和视频的威胁变得普遍。并且检测这些机器生成的假图像比以往任何时候都具有挑战性。在这项工作中,我们提出了一个轻巧的稳健微调神经网络基于基于神经网络的分类器架构,称为假检测微调网络(FDFTNET),该架构能够检测许多新的假面图像生成模型,并且可以轻松地与现有的图像分类网络结合在一起,并在几个数据集中进行了填充。与许多现有方法相反,我们的方法旨在重复使用流行的预训练模型,其中只有几张图像进行微调以有效检测假图像。我们方法的核心是引入一个基于图像的自我发项模块,称为微调变压器,该模块仅使用注意模块和下采样层。该模块被添加到预训练的模型中,并在一些数据上进行了微调,以搜索新的功能空间集以检测假图像。我们在基于甘斯基的数据集(渐进式生长的gan)和基于深击的数据集(deepfake和face2face)上尝试使用FDFTNET,其较小的输入图像分辨率为64x64,这使检测复杂化。我们的FDFTNET在检测基于GAN的数据集产生的假图像方面达到了90.29%的总体准确性,表现优于最先进的图像。

Creating fake images and videos such as "Deepfake" has become much easier these days due to the advancement in Generative Adversarial Networks (GANs). Moreover, recent research such as the few-shot learning can create highly realistic personalized fake images with only a few images. Therefore, the threat of Deepfake to be used for a variety of malicious intents such as propagating fake images and videos becomes prevalent. And detecting these machine-generated fake images has been quite challenging than ever. In this work, we propose a light-weight robust fine-tuning neural network-based classifier architecture called Fake Detection Fine-tuning Network (FDFtNet), which is capable of detecting many of the new fake face image generation models, and can be easily combined with existing image classification networks and finetuned on a few datasets. In contrast to many existing methods, our approach aims to reuse popular pre-trained models with only a few images for fine-tuning to effectively detect fake images. The core of our approach is to introduce an image-based self-attention module called Fine-Tune Transformer that uses only the attention module and the down-sampling layer. This module is added to the pre-trained model and fine-tuned on a few data to search for new sets of feature space to detect fake images. We experiment with our FDFtNet on the GANsbased dataset (Progressive Growing GAN) and Deepfake-based dataset (Deepfake and Face2Face) with a small input image resolution of 64x64 that complicates detection. Our FDFtNet achieves an overall accuracy of 90.29% in detecting fake images generated from the GANs-based dataset, outperforming the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源